
Pathogens that contribute to the accumulation of infectious burden
Results published in 2015 in the European Journal of Neurology confirmed a link between infectious burden and AD. Findings suggest that infectious burdens are risk factors pre-onset and responsible for faster progression post-onset.7 Antibody titers of cytomegalovirus herpes simplex virus type 1 (HSV-1) (B burgdorferi, C pneumonia, and H pylori) were assessed using the ELISA serological test in patients with AD and a control group. In all cases, the infectious burden was positively associated with AD. Individuals who had higher infectious burdens and, consequently, increased serum Aβ levels were more affected with respect to cognitive deficits.
Bacteria, viruses, fungi, and, occasionally, protozoa are able to cross through the blood-brain barrier and in turn cause chronic illnesses. Various types of spirochetes (eg, B burgdorferi) and obligate intracellular bacteria (C pneumoniae) are among the most frequently invasive infectious entities that can generate persistent infection in the brain.3 In turn, this finding suggests that these pathogens could enhance the Aβ deposition in AD and trigger peripheral inflammation. Moreover, there is a suggestion that B burgdorferi causes intracellular inflammation in brain tissues, which leads to neurodegenerative and cognitive changes in people with neuroborreliosis and AD. H pylori- specific IgG antibody in serum is thought to be a marker for AD.8 However, further research is needed to detect the availability of these antibodies in the brain.
Viral burden of herpes simplex virus (HSV), human herpesvirus (HHV), and the hepatitis C virus (HCV) is commonly associated with AD by apolipoprotein E-ε4 (APOE-ε4).9 The accumulation of senile amyloid plaques and tau-protein is a significant risk in people with AD due to the combination with APOE-ε4. One of the biomarkers of HSV reactivation detected by ELISA showed a significant link between the presence of anti-HSV-1 IgG, anti-HSV-1 IgM antibodies, and AD.3 According to data from the Center for Disease Control and Prevention, one in three people aged 60 or over suffer from HHV.10 For this reason, shingles indicate a risk for future AD.
There are limited studies to explain the mechanisms that underlay HCV infection and dementia.
Two hypotheses have been advanced:
1) The virus causes the systemic inflammation and thereby contributes to indirect neurotoxicity;
2) The virus is able to disintegrate brain tissues through a direct cumulative neurotoxic effect.
Dr Aliev is President and Founder, International Research Institute, San Antonio, TX; Professor of Pharmacology, First Moscow State Medical University, Moscow; and Professor, Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russia. Dr Bachurin is Scientific Director and Professor of Chemistry, Institute of Physiologically Active Compounds, Russian Academy of Sciences. Ms Mikhaylenko is a PhD Student, Department of Pharmacology, Institute of Physiologically Active Compounds, Russian Academy of Sciences. Dr Bragin is President and Founder, Stress Relief and Memory Training Center, Brooklyn, NY. Dr Avila -Rodriguez is Leading Researcher, Health Sciences Faculty, Clinical Sciences Department, University of Tolima, Ibague, Colombia. Dr Somasundaram is Professor, Biology Department, Salem University, Salem, WV. Dr Kirkland is Professor, Biology Department and Executive Vice President, Salem University. Dr Tarasov is Chairman, Department of Pharmacology and Pharmacy, First Moscow State Medical University, Moscow. The authors report no conflicts of interest concerning the subject matter of this article.
Acknowledgments—This research was supported within the framework of the grant provided by CSP Ministry of the Health Russian Federation, and by the IPAC RAS State Targets Project # 0090-2019-0005; the Russian Academic Excellence Project “5-100” for the Sechenov University, in Moscow, Russia, also provided support for the research.
1. Alzheimer’s Association. Alzheimer disease facts and figures. Alzh Dem. 2019;15:321-387.
2. MacKenzie RJ. Quartet of papers provide a fresh look at sex differences in dementia. Technology Networks. July 19, 2019 [Epub].
3. Ashraf GM, Tarasov VV, Makhmutova A, et al. The possibility of an infectious etiology of Alzheimer disease. Mol Neurobiol. 2019;56:4479-4491.
4. Makin S. The amyloid hypothesis on trial. Nature. 2018; 559:4-7.
5. Sochocka M, Diniz BS, Leszek J. Inflammatory response in the CNS: friend or foe? Mol Neurobiol. 2017;54: 8071-8089.
6. Aliev G, Priyadarshini M, Reddy VP, et al. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr Med Chem. 2014;21:2208-2217.
7. Bu XL, Yao XQ, Jiao SS, et al. A study on the association between infectious burden and Alzheimer disease. Eur J Neurol. 2015;22:1519-1525.
8. Doulberis M, Kotronis G, Thomann R, et al. Review: impact of helicobacter pylori on Alzheimer disease: what do we know so far? Helicobacter. 2018;23 [Epub].
9. Lövheim H, Gilthorpe J, Adolfsson R, et al. Reactivated herpes simplex infection increases the risk of Alzheimer disease. Alzh Dem. 2015;11:593-599.
10. Centers for Disease Control and Prevention. About Underlying Cause of Death, 1999-2017. http://wonder.cdc.gov/ucd-icd10.html. Accessed October 1, 2018.
11. Alzheimer Association. Medication for Memory. https://www.alz.org/alzheimers-dementia/treatments/medications-for-memory. Accessed October 1, 2019.
12. Fülöp T, Itzhaki RF, Balin BJ, et al. Role of Microbes in the Development of Alzheimer Disease: State of the Art. Presented at the 2017 IAGG Congress. San Francisco, CA: July 23-27, 2017.
13. U.S. National Library of Medicine. ClinicalTrials.gov. Antiviral Therapy in Alzheimer Disease. https://clinicaltrials.gov/ct2/show/NCT03282916. Accessed October 1, 2019.
14. Wozniak MA, Itzhaki RF. Antiviral agents in Alzheimer disease: hope for the future? Ther Adv Neurol Dis. 2010;3:141-152.
15. Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing, and neurodegeneration. J Physiol. 2017;595:489-503.
16. Dodiya HB, Kuntz T, Shaik SM, et al. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J Exp Med. 2019;216:1542-1560.
17. Szekely CA, Zandi PP. Non-steroidal anti-inflammatory drugs and Alzheimer’s disease: the epidemiological evidence. CNS Neurol Disord Drug Targets. 2010;9:132-139.
18. Yip AG, Green RC, Huyck M, et al for the MIRAGE Study Group. Nonsteroidal anti-inflammatory drug use and Alzheimer disease risk: the MIRAGE study. BMC Geriatr. 2005;5:2.
19. Martyn C. Anti-inflammatory drugs and Alzheimer disease. BMJ. 2003; 327:353-354.
20. Abraham J, Johnson RW. Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuv Res. 2009;12:445-453.
21. Allen HB. Alzheimer disease: assessing the role of spirochetes, biofilms, the immune system, and amyloid- with regard to potential treatment and prevention. J Alzh Dis. 2016;53:1271-1276.❒