Psychiatric Times Vol 21 No 9

The Buck

Dirt road and forest exhale, crickets rasp,and August pours damp pink light at dusk.

The past two decades have ushered in a new era of methodological advances in tools for noninvasive imaging of the living brain. The information gleaned from advances in neuroimaging have been used to provide insights into ADHD's etiology, diagnosis and treatment.

The number of magnetic resonance spectroscopy studies that assess the levels of different neurochemicals in bipolar disorder has increased considerably in recent years. Abnormalities were reported mainly in the brain regions implicated in the pathophysiology of BD: the dorsolateral prefrontal cortex, cingulated gyrus, hippocampus and basal ganglia. Although these findings are not diagnostic, future research in this area may help to elucidate the pathophysiology of BD and monitor treatment effects.

Although eating disorders have been considered to be largely sociocultural in origin, findings from family, twin and molecular genetic studies conducted during the last decade are refuting that perspective. Recent studies have had significant success in isolating specific chromosome regions that may harbor susceptibility loci for anorexia and bulimia nervosa and are helping to shed light on the degree of heritability of eating disorders.

Transcranial magnetic stimulation has been applied in a growing number of psychiatric disorders as a putative treatment. As a focal intervention that may exert lasting effects, TMS offers the hope of targeting underlying circuitry and ameliorating the effects of psychiatric disorders. The ultimate success of such an approach depends upon our knowledge of the neural circuitry involved, on how TMS exerts its effects and on how to control its application to achieve the desired effects. Current challenges in the field include determining how to enhance the efficacy of TMS in these disorders and how to identify patients for whom TMS may be efficacious.